disini terdapat soal yaitu persamaan kuadrat yang akar-akarnya 5 dan min 6 adalah untuk mencari persamaan kuadrat yang sudah diketahui akar-akarnya yaitu dengan cara X min x 1 x dengan x min x 2 Nah kita ketahui di sini X satunya adalah 5 dan x2 nya adalah min 6 jadi untuk mencari persamaannya yaitu X min x satunya adalah 5 x dengan x min x 2 nya adalah min 6 maka ini menjadi X min 5 x dengan
PembahasanApabila akar-akar dari persamaan kuadrat sudah diketahui, maka kita dapat menyusun persamaan kuadratnya dengan sifat akar-akarnya, yaitu dengan menggunakan rumus x β x 1 β x β x 2 β = 0 Dari soal tersebut diketahui dan , sehingga diperoleh x β x 1 β x β x 2 β x β β 10 x β 5 x + 10 x β 5 x 2 β 5 x + 10 x β 50 x 2 + 5 x β 50 β = = = = = β 0 0 0 0 0 β Jadi, persamaan kuadratnya adalah .Apabila akar-akar dari persamaan kuadrat sudah diketahui, maka kita dapat menyusun persamaan kuadratnya dengan sifat akar-akarnya, yaitu dengan menggunakan rumus Dari soal tersebut diketahui dan , sehingga diperoleh Jadi, persamaan kuadratnya adalah .
Dalam tulisan ini, kita akan mempelajari bagaimana cara menentukan jumlah dan hasil kali akar-akar persamaan kuadrat. Untuk menentukan jumlah dan hasil kali akar, kita tidak perlu menentukan akar-akarnya terlebih dahulu, kita cukup melihat koefisien-koefisien persamaannya.
Apabila akar-akar suatu persamaan kuadrat diketahui, maka kita dapat menyusun persamaan kuadrat itu dengan dua cara, yaitu menggunakan faktor dan menggunakan rumus jumlah dan hasil kali akar-akar. Untuk jelasnya, marilah kita pelajari materi di bawah ini. a. Menggunakan Faktor Apabila suatu persamaan kuadrat dapat difaktorkan menjadi x β x1x β x2 = 0, maka x1 dan x2 merupakan penyelesaian atau akar-akar persamaan kuadrat tersebut. Sebaliknya, apabila x1 dan x2 merupakan penyelesaian atau akar-akar persamaan kuadrat, maka persamaan kuadrat itu dapat ditentukan dengan rumus Bagaimana menggunakan rumus di atas? Baiklah, untuk lebih jelasnya perhatikanlah beberapa contoh di bawah ini. Contoh 1 Susunlah persamaan kuadrat yang akar-akarnya 3 dan 4! Jawab Di sini berarti x1 = 3 dan x2 = 4. Dengan menggunakan rumus x β x1 x β x2 Maka diperoleh x β 3 x β 4 x β 4x β 3x + 12 x β 7x + 12 = 0 = 0 = 0 = 0 Jadi persamaan kuadrat yang diminta adalah x β 7x +12 = 0. Mudah bukan? Anda masih belum paham? Baiklah, untuk itu simaklah contoh 2 di bawah ini. Contoh 2 Tentukan persamaan kuadrat yang akar-akarnya dan -5! Jawab Di sini berarti x1 = dan x2 = -5 Dengan menggunakan rumus x β x1 x β x2 = 0 Maka diperoleh x β x β -5 = 0 x β x + 5 = 0 x + 5x β x β = 0 kedua ruas dikalikan 2 2x + 10x β x β 5 2x + 9x β 5 = 0 = 0 Jadi persamaan kuadrat yang diminta adalah 2x + 9x β 5 = 0. Bagaimana, tidak sulit bukan? Sudah pahamkah Anda? Untuk menambah pemahaman Anda, perhatikanlah contoh 3 berikut. Contoh 3 Susunlah persamaan kuadrat yang akar-akarnya β dan β Jawab Di sini berarti x1 = β dan x2 = β Dengan menggunakan rumus x β x1 x β x2 = 0 Maka diperoleh x β - x β - = 0 x + x + = 0 x + x + x + = 0 kedua ruas dikalikan 2 6x + 9x + 2x + 3 6x + 11x + 3 = 0 = 0 Jadi persamaan kuadrat yang diminta adalah 6x + 11x + 3 = 0 Setelah memperhatikan beberapa contoh di atas, sudah pahamkah Anda? Untuk mengetahui sejauh mana pemahaman Anda terhadap materi di atas, kerjakan soal-soal latihan uji kompetensi berikut. 1. Susunlah persamaan kuadrat yang akar-akarnya 1 dan 3 2. Tentukan persamaan kuadrat yang akar-akarnya -2 dan -7 3. Susunlah persamaan kuadrat yang akar-akarnya β dan Perhatikan, sebelum selesai mengerjakan soal-soal tersebut Anda jangan membaca jawabannya terlebih dulu. Bagaimana, sudah selesaikah Anda mengerjakannya? Apabila sudah selesai, samakanlah pekerjaan Anda dengan jawaban di bawah ini. 1. Akar-akarnya x1 = 1 dan x2 = 3 2. Akar-akarnya x1 = -2 dan x2 = -7 3. Akar-akarnya x1 = β dan x2 = Maka x β x1x β x2 = 0 x β -x β = 0 x + x β = 0 x β x + x β = 0 kedua ruas dikalikan 8 8x β 20x + 2x β 5 8x β 18x β 5 = 0 = 0 Jadi persamaan kuadrat yang diminta adalah 8x β 18x β 5 = 0 Tidak sulit bukan? Apakah pekerjaan Anda sama seperti jawaban di atas? Apabila ya, bagus! Berarti Anda benar. Apabila pekerjaan Anda belum benar, segeralah samakan dengan jawaban di atas. Jika mengalami kesulitan, diskusikanlah dengan teman-teman atau tanyakan langsung kepada guru bina pada saat tatap muka. Bagi Anda yang menjawab benar, selanjutnya dapat mempelajari materi berikut ini. Kali ini kita akan mempelajari cara menyusun persamaan kuadrat yang akar-akarnya diketahui dengan cara yang kedua yaitu b. Menggunakan Rumus Jumlah dan Hasil Kali Akar-Akar Persamaan kuadrat ax + bx + c = 0 a 0 apabila kedua ruas dibagi dengan a, maka dapat dinyatakan dalam bentuk x + x + = 0 Dari rumus jumlah dan hasil kali akar-akar kita peroleh hubungan Jadi persamaan kuadrat x + x + = 0 dapat dinyatakan dalam bentuk x β x1 + x2x + = 0 Agar Anda memahami dan terampil menggunakan rumus tersebut, marilah kita simak beberapa contoh di bawah ini. Contoh 1 Susunlah persamaan kuadrat yang akar-akarnya 3 dan 4 Jawab Di sini berarti x1 = 3 dan x2 = 4. Jadi persamaan kuadrat yang diminta adalah x β 7x +12 = 0. Mudah bukan? Selanjutnya perhatikan contoh 2 di bawah ini. Contoh 2 Tentukan persamaan kuadrat yang akar-akarnya dan -2! Jawab Di sini berarti x1 = dan x2 = -2 Dengan menggunakan rumus x β x1 + x2x + = 0 Maka diperoleh x β + -2x + .-2 = 0 x β β 2x β 1 = 0 x β β x β 1 = 0 x β - x β 1 = 0 x + x β 1 = 0 kedua ruas dikali 2 2x + 3x β 2 = 0 Jadi persamaan kuadrat yang diminta adalah 2x + 3x β 2 = 0. Sudah pahamkah Anda? Apabila sudah paham, bagus! Nah, untuk menambah pemahaman Anda perhatikan contoh 3 di bawah ini! Contoh 3 Akar-akar persamaan kuadrat 3x + 2x β 1 = 0 adalah a dan b. Susunlah persamaan kuadrat yang akar-akarnya dan Jawab Persamaan kuadrat 3x + 2x β 1 = 0, berarti a = 3, b = 2, dan c = -1 Maka a + b = β = β a . b = = β Misalkan persamaan kuadrat yang diminta mempunyai akar-akar x1 dan x2, maka x1 = dan x2 = . Ini berarti x1 + x2 = + = disamakan penyebutnya = = = = 2 Ini berarti x1 . x2 = . Subtitusi x1 + x2 = 2 dan x1 . x2 = -3 ke persamaan Jadi persamaan kuadrat yang diminta adalah x β 2x β 3 = 0. Setelah memperhatikan contoh-contoh di atas, sudah pahamkah Anda? Untuk mengetahui sampai dimana pemahaman Anda terhadap materi di atas, kerjakanlah soal-soal latihan berikut 1. 2. Susunlah persamaan kuadrat yang akar-akarnya 2 dan 4 dengan menggunakan rumus jumlah dan hasil kali akar-akar! Tentukan persamaan kuadrat yang akar-akarnya -5 dan 6 dengan menggunakan rumus jumlah dan hasil kali akar-akar! 3. Susunlah persamaan kuadrat yang akar-akarnya β dan β dengan menggu-nakan rumus jumlah dan hasil kali akar-akar! 4. Akar-akar persamaan kuadrat x β 3x β 10 = 0 adalah a dan b. Susunlah persamaan kuadrat yang akar-akarnya dan dengan menggunakan rumus jumlah dan hasil kali akar-akar! 5. Akar-akar persamaan kuadrat x +3x + 2 = 0 adalah 2a dan b. Susunlah persamaan kuadrat yang akar-akarnya 2a dan 2b dengan menggunakan rumus jumlah dan hasil kali akar-akar! Sebelum selesai mengerjakan soal-soal di atas, Anda jangan membaca jawabannya terrlebih dahulu. Apabila sudah selesai mengerjakannya cocokkanlah pekerjaan Anda dengan jawaban di bawah ini. 1. Akar-akarnya x1 = 2 dan x2 = 4. Dengan menggunakan rumus x β x1 + x2x + = 0 Maka diperoleh x -2+4x + = 0 x β 6x + 8 = 0 Jadi persamaan kuadrat yang diminta adalah x β 6x + 8 = 0 2. Akar-akarnya x1 = -5 dan x2 = 6. Dengan menggunakan rumus x β x1 + x2x + = 0 Maka diperoleh x -5+6x + -5.6 = 0 x β 1x β 30 = 0 x β x β 30 = 0 Jadi persamaan kuadrat yang diminta adalah x β x β 30 = 0 3. Akar-akarnya x1 = β dan x2 = β . Dengan menggunakan rumus x β x1 + x2x + = 0 Maka diperoleh x - + - x + - .- = 0 Jadi persamaan kuadrat yang diminta adalah 8x + 6x + 1 = 0 4. Persamaan kuadrat x β 3x β 10 = 0, berarti a = 1, b = -3, dan c = -10. Maka a + b = β = β = 3, dan a . b = = = -10 Misalkan persamaan kuadrat yang diminta mempunyai akar-akar x1 dan x2, maka x1 = dan x2 = . Ini berarti x1 + x2 = + = disamakan penyebutnya = = = β Ini berarti x1 . x2 = . Subtitusi x1 + x2 = β dan x1 . x2 = β ke persamaan x β x1 + x2 x + x1 . x2 = 0 x β - x + - = 0 x + x β = 0 kedua ruas dikalikan 10 10x + 3x β 1 = 0 Jadi persamaan kuadrat yang diminta adalah 10x + 3x β 1 = 0. 5. Persamaan kuadrat x +3x + 2 = 0, berarti a =1, b = 3, dan c = 2. Maka a + b = β = β = -3, dan a . b = = = 2 Misalkan persamaan kuadrat yang diminta mempunyai akar-akar x1 dan x2, maka x1 = 2a dan x2 = 2b. Ini berarti x1 + x2 = 2a + 2b Ini berarti x1 . x2 =2a .2b Subtitusi x1 + x2 = -6 dan x1 . x2 = 8 ke persamaan x β x1 + x2 x + x1 . x2 = 0 x β - 6x + 8 = 0 x + 6x + 8 = 0 Jadi persamaan kuadrat yang diminta adalah x + 6x + 8 = 0. Tidak sulit bukan? Pekerjaan Anda sama seperti jawaban di atas? Apabila ya, bagus! berarti Anda benar. Apabila pekerjaan Anda belum benar, segeralah samakan dengan jawaban di atas. Jika mengalami kesulitan diskusikanlah dengan teteman-teman atau tanyakan langsung kepada guru bina pada saat tatap muka. Bagi Anda yang menjawab benar selanjutnya kerjakanlah Tugas 2. Nah, selamat mengerjakan!
di sini ada pertanyaan mengenai bentuk persamaan kuadrat akar persamaan kuadrat adalah nilai x yang memenuhi bentuk persamaan kuadratnya kalau kita punya bentuk a x kuadrat ditambah dengan b x = c = 0 misalnya dia punya akar-akar jadi akar-akarnya kita beri nama misalnya ada A P dan Q berarti kita dapatkan hubungan antara P dan Q adalah p + q = min b per a lalu P dikali Q = C per a dengan a b
- Program Belajar dari Rumah yang tayang di TVRI pada Selasa, 15 September 2020 membahas materi Persamaan Kuadrat untuk SMP. Ada beberapa pembahasan dan pertanyaan pada materi tersebut. Berikut adalah pembahasan dan pertanyaan keempat. Soal Akar-akar persamaan kuadrat 2x2 + 8x β 5 = 0 adalah p dan q. Susunlah persamaan kuadrat baru dalam y yang akar-akarnya 3p β 2 dan 3q β Welianto Jawaban soal Program Belajar dari Rumah TVRI pada Selasa, 15 September 2020 SMP. Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
Susunlahpersamaan kuadrat yang akar-akarnya lima lebihnya dari akar-akar persamaan kuadrat . Pembahasan: Misalkan akar-akar persamaan kuadrat adalah dan , maka Tentukan persamaan kuadrat yang akar-akarnya 2 kurangnya dari akar-akar persamaan c. Tentukan persamaan grafik fungsi kuadrat yang mempunyai titik balik (1, -4) dan melalui titik (2
Kelas 9 SMPPERSAMAAN KUADRATAkar Persamaan KuadratPersamaan kuadrat yang akar-akarnya 1/5 dan -2 adalah A. 5x^2 - 9x - 2 = 0 B. 5x^2 - 2x + 9 = 0 C. 5x^2 + 2x + 9 = 0 D. 5x^2 + 9x - 2 = 0 E. 5x^2 + 9x + 2 = 0Akar Persamaan KuadratPERSAMAAN KUADRATALJABARMatematikaRekomendasi video solusi lainnya0244Jika akar-akar persamaan kuadrat 2x^2 + 5x - 3 = 0 adalah...0314Persamaan 2x^3 + 3x^2 + px + 8 = 0 mempunyai sepasang aka...0239Jika p =/= 0 dan akar-akar persamaan x^2 + px + q = 0 ada...0313Jika x1 dan x2 adalah akar-akar x^2+3x+1=0,maka persamaan...Teks videoDi sini ada pertanyaan tentukanlah persamaan kuadrat yang akar-akarnya adalah 1/5 dan negatif 2 untuk menentukannya kita akan menggunakan bentuk persamaan kuadrat. Jika akarnya adalah x1 dan x2 yaitu X min x 1 dikali X min x 2 = 0 dengan x 1 = 1 dan x 2 y = min 2 maka kita dapatkan x min 1 per 5 x x min min 2 sama maka kita dapatkan x min 1 per 5 x x + 2 = 0 selanjutnya kita kalikan yang luas X hasilnya adalah x kuadrat kemudian X dikalikan 2 = 2 X B Tuliskan + 2 x kemudian min 15 dikalikan x adalah minus 1 per 5 x dan min 1 per 5 x min 2 = min 2 per 5 di sini = 0,2 X kita Ubah menjadi pecahan berpenyebut 5 Maka hasilnya adalah x kuadrat ditambah 10 per 5 min 1 per 5 x min 2 per 5 sama dengan nol maka kita dapatkan x kuadrat + 9 x 55 sama dengan nol selanjutnya kita kalikan dengan 5 persamaannya ruas kiri dan ruas kanan sehingga kita dapatkan persamaannya jadi 5 x kuadrat ditambah 9 x dikurangi 2 sama dengan nol maka jawabannya adalah D sampai pertanyaan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul
Akar akar persamaan 2xpangkat2+8x-5=0 adalah p dan q susunlah persamaan kuadrat dalam y yang akar akarnya sebagai berikut. - 25499013
ο»Ώvivaproducation vivaproducation Matematika Sekolah Menengah Atas terjawab β’ terverifikasi oleh ahli Iklan Iklan newwiguna newwiguna = 3xβ = 4Persamaan kuadratx - xβx - xβ = 0x - 3x - 4 = 0xΒ² - 3x - 4x + 12 = 0xΒ² - 7x + 12 = = 1/2xβ = -5x - xβx - xβ = 0x - 1/2x - -5 = 0x - 1/2x + 5 = 0xΒ² - 1/2x + 5x - 5/2 = 02xΒ² - x + 10x - 5 = 02xΒ² + 9x - 5 = 0 angka 9 di bagian B dari -x+10x makasih jawabannya maaf, mau nanyaa...angka 9 yang B dari mana ya? nice makasih jawabannya yah Iklan Iklan Pertanyaan baru di Matematika persamaan garis singgung lingkaran xΒ²+yΒ²-2x +2y -28=0 yang tegak lurus garis 4x-y=12 adalah... β salah satu persamaan garis singgung lingkaran xΒ²+yΒ²=15 dengan 1/2 adalah..... β nilai variasi x dari persamaan 1/3x+2=4 adalahβ diketahui segitiga ABC siku-siku di C jika panjang sisi BC 20 cm dan besar sudut b adalah 60Β°, maka panjang sisi AB adalahβ Trapesium PQRS adalah trapesium sama kaki, jika panjang PQ = 23 cm, PS = RS = QR = 13 cm, maka luas trapesium PQRS adalah Sebelumnya Berikutnya Iklan
. 428 19 264 472 212 129 113 395
susunlah persamaan kuadrat yang akar akarnya